organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Chun-Wei Xin,* Tao Zeng and Jiang-Sheng Li

College of Pharmaceuticals and Biotechnology, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail: cuxin@126.com

Key indicators

Single-crystal X-ray study T = 294 K Mean σ (C–C) = 0.003 Å R factor = 0.045 wR factor = 0.135 Data-to-parameter ratio = 17.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

2,6-Di-*tert*-butyl-4-[(4-methoxyphenylimino)methyl]phenol

The title compound, $C_{22}H_{29}NO_2$, was prepared from 3,5-di*tert*-butyl-4-hydroxybenzaldehyde and 4-methoxyaniline by an indirect reductive amination process. Intermolecular O– H···N hydrogen bonds seem to be effective in the stabilization of the crystal structure.

Comment

Hindered phenol anti-oxidants are widely used in polymers and lubricants (Yamazaki & Seguchi, 1997). As we have reported previously, we have tried to synthesize a series of secondary benzylamine derivatives with a hindered phenol group, as intermediates (Shu *et al.*, 2005).

However, when we attempted an indirect reductive amination synthetic procedure, the title compound, (I), was produced from 3,5-di-*tert*-butyl-4-hydroxybenzaldehyde and 4-methoxyaniline.

The bond lengths and angles (Table 1) are in normal ranges (Allen *et al.*, 1987). In the crystal structure, the molecules are linked by intermolecular $O-H \cdots N$ hydrogen bonds (Table 2), forming a one-dimensional chain parallel to the *b* axis (Fig. 2).

Experimental

A mixture of 3,5-di-*tert*-butyl-4-hydroxybenzaldehyde (11.7 g, 0.05 mol) and 4-methoxyaniline (6.15 g, 0.05 mol) was stirred in toluene (100 ml), affording (I) (yield 16.8 g, 99.5%; m.p. 388–389 K). Suitable crystals were obtained by slow evaporation of a solution in a mixture of dichloromethane/ethanol (1:1).

Mo $K\alpha$ radiation Cell parameters from 3392

 $0.26 \times 0.22 \times 0.20 \ \mathrm{mm}$

reflections $\theta = 2.4-24.0^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 294 (2) K Block, colorless

Crystal data

$C_{22}H_{29}NO_2$	
$M_r = 339.46$	
Orthorhombic, Pbca	
a = 12.281 (3) Å	
b = 13.945 (3) Å	
c = 23.527 (5) Å	
V = 4029.3 (15) Å ³	
Z = 8	
$D_x = 1.119 \text{ Mg m}^{-3}$	

© 2006 International Union of Crystallography All rights reserved Received 3 March 2006 Accepted 20 March 2006

Data collection

Bruker SMART CCD area-detector	4142 independe
diffractometer	2131 reflection
φ and ω scans	$R_{\rm int} = 0.067$
Absorption correction: multi-scan	$\theta_{\rm max} = 26.5^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -7 \rightarrow 15$
$T_{\min} = 0.982, \ T_{\max} = 0.986$	$k = -17 \rightarrow 17$
21536 measured reflections	$l = -29 \rightarrow 29$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0513P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.045$	+ 0.9192P]
$wR(F^2) = 0.135$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.00	$(\Delta/\sigma)_{\rm max} = 0.001$
4142 reflections	$\Delta \rho_{\rm max} = 0.15 \ {\rm e} \ {\rm A}^{-3}$
235 parameters	$\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	Extinction correction: SHELXL
	Extinction coefficient: 0.0022 (4)

independent reflections reflections with $I > 2\sigma(I)$

SHELXL97

Table 1

Selected geometric parameters (Å, °).

O1-C4	1.380 (2)	N1-C15	1.273 (2)
02 - C19 02 - C22	1.370(2) 1.402(3)	N1-C16	1.427 (2)
C15-N1-C16	118.21 (18)	N1-C15-C1	125.5 (2)
O1-C4-C5	118.94 (17)	O2-C19-C18	125.3 (2)
O1-C4-C3	118.40 (18)	O2-C19-C20	115.4 (2)
C16-N1-C15-C1	175.77 (19)	C15-N1-C16-C17	-43.6 (3)
C2-C1-C15-N1	-7.6(3)	C15-N1-C16-C21	140.1 (2)
C6-C1-C15-N1	175.7 (2)		

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$O1 - H1 \cdots N1^i$	0.82	2.08	2.897 (2)	172
Symmetry code: (i)	$-x + \frac{1}{2}, y - \frac{1}{2}, z.$			

H atoms were positioned geometrically (O-H = 0.82 Å, and C-H = 0.93 Å for aromatic and methine H atoms and 0.96 Å for methyl H atoms) and constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C,O)$, where x = 1.2 for aromatic and methine H atoms and x = 1.5 for all other H atoms.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Figure 1

A drawing of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

A packing diagram of (I). Hydrogen bonds are shown as dashed lines.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans 2, pp. S1-19.
- Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Shu, X.-G., Zeng, T., Chen, L.-G., Yan, F.-Y. & Zhang, Y.-C. (2005). Acta Cryst. E61, o4192-o4194.
- Yamazaki, T. & Seguchi, T. (1997). J. Polym. Sci. Part A Polym. Chem. 35, 2431-2439.